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Abstract. Averaged equations of motion for the action of the
Galactic disk on the comets from the Oort cloud are studied
from the qualitative point of view. The motion is described on
a sphere which reflects the actual topology of the problem. The
presence and location of the equilibria is established for all cases
including the class of polar orbits. A geometrical construction
is proposed to analyze directly the evolution of the Laplace
vector. Specifying the qualitative properties of different classes
of cometary orbits may help to identify the effect of Galactic
disk tides in the observed population of comets.
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1. Introduction

Tidal action by the Galactic disk on the Oort cloud is now recog-
nized as one of the main agents susceptible of producing observ-
able comets. The study of galactic tides usually concentrates on
statistical distributions of orbital elements for comets.

We offer a geometric model in which to structure the anal-
ysis of these distributions. Our model has the advantage of in-
corporating the boundary cases of polar and circular orbits. The
modelling transfers to cometary dynamics techniques developed
in celestial mechanics for artificial satellites problems (Coffey
et al. 1986) or the motion in the generalized van der Waals po-
tential (Elipe & Ferrer 1994).

The general properties of different classes of orbits that we
identify in this paper may serve as a clue in the search for the
fingerprint of Galactic disk tides in the observed population of
comets. The results of the paper can also be of practical value;
they can be used, for example, to construct a preselection tool
in Monte Carlo simulations.

Most of the algebraic operations for this paper were per-
formed with “Mathematica’ (Wolfram 1988), which also served
to draw the figures.

Send offprint requests to: S. Breiter

2. The Hamiltonian of the problem

The heliocentric motion of a comet is determined by the Hamil-
tonian function # = F# + £.#, where the Keplerian part
is A = —p/(2a), with the Sun’s gravity parameter u and the
semi-major axis a. The unit of mass is the solar mass. The sec-
ond part .7 has a simple oscillator form .#) = 22/2 in the
heliocentric Cartesian reference frame whose Oxy plane is par-
alell to the Galactic disk. The parameter € = 4 7 41 p depends on
the mean density of the Galactic disk p; adopting the value of
p given by Bahcall (1984), one obtains € =~ 0.016 Myr™2. At
large distances the part e.7%; may dominate over the Keplerian
potential Uy = —p /7, but following the generally accepted es-
timates of the distribution of semi-axes in the Oort cloud (see
for example Duncan et al. (1987)), we can assume that most
of the comets have a < 40000 A.U. (those with a bigger a
are rather treated as interstellar comets). At this value of a one
has e#,/ | Up |< 0.1 which allows to treat the motion as a
disturbed two-body problem.

The symmetry of the potential

2
U=-E4+cZ 1)
r 2

with respect to the rotations around the Oz axis guarantees the
conservation of the z-component H of the angular momentum.
Hence, there are two integrals present in the problem: the energy
integral .# =const., and H =const. Throughout the paper we
adopt the following symbols: L = \/pa, G = LV'1 — €2, and
H = Gc for the Delaunay momenta, [, g, h for mean anomaly,
argument of perihelion, and longitude of the ascending node
respectively, and ¢, s for the cosine and the sine of inclination.

Following Heisler and Tremaine (1986) we can replace the
original Hamiltonian .7 by its average with respect to the
undisturbed mean anomaly

T = T+ ey, (2)
Ty = —p/a). (3)
T = %0282(1~62+5628iﬂ2g), 4)
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thus neglecting the periodic perturbations of order O(<). The
averaged system possess three integrals of which H =const. is
satisfied exactly and the remaining two.7 =const. ,. #=const.
are satisfied only within the error of approximation. The latter
two integrals imply a =const., L =const. , and .7 j=const. In
terms of the Delaunay variables the averaged motion is reduced
to the one degree of freedom problem

8.3, Cere 8.7,
aG ’ - dg

g=¢ &)
The equations of motion for the remaining two variables [, h in-
volve only g, G and the two constant parameters L. H. Matese
& Whitman (1989) solved the system (5) in terms of Jacobi
elliptic functions. The qualitative behaviour of the solutions of
(5) was studied by Heisler & Tremaine (1986) and by Matese &
Whitman (1989). But both papers consider the solution curves
in a (g, G) Mercator-like chart i.e. on a cylinder where the argu-
ment of perihelion g plays the role of a longitude. For obviuos
geometrical reasons the solutions with G = L (i.e. e = 0) or
with G = H (i.e. s = 0) — where g becomes undetermined — are
excluded from the Mercator chart. We remedy this exclusion in
the next section.

3. The motion in the general case

The proper topology of the problem is not that of a cylindric
surface but this of the two-dimensional sphere .%° 2 Indeed,
following the approach of Coffey et al. (1986) we adopt the
CDM (Coffey-Deprit-Miller) variables £

& = LGescosg,
& = LGessing, (6)
& =G - [ (I*+HY),

and find that these variables define the phase space as the sphere
%2 with the radius

Re=(8+&8+8) " =1 (1>~ 1), ™

The argument of perihelion g plays the role of a longitude on
the sphere (counted from the O, axis counterclockwise); it is
undetermined at both poles, where &, = &, = 0. The north pole
on the sphere is the point where &3 = R and this implies

2G* - (L*+ H?) = (L* - HY); (8)

hence G? = L? which means e = 0. At the south pole, £3 = — R
i.e G = H? and this means s = 0. Thus, the north pole as a
point represents a class of circular orbits, and the south pole is a
point representing the orbits in the Galactic plane. Both points
are well defined in the CDM variables as (0. 0, £ R¢), whereas
in the Mercator map they are excluded.

The value of Rg, depending on the constant parameters L
and H, sets the natural bounds on the eccentricity e and on
the inclination i. At the south pole, where ¢ = 1, the value
of e reaches its maximum value e* = /1 — H2/L2. Looking

northward along a meridian we meet the points with smaller
and smaller ¢, while the inclination grows because of H/L =
c¢V1 — e? = const. Atthe north pole the inclination reaches the
maximum value with ¢* = H/L and s* = /1 — H2/L? = ¢*
. Generally, we can treat the parallels on the sphere as the lines
of constant e or equivalently as the lines of constant i. When
H? = L? the sphere collapses into a point which represents
the circular orbits in the Galactic plane. At the other extreme,
H = 0 contains both the polar orbits (¢ = 0) and the degenerate
rectilinear orbits with G = 0. We keep this case aside until the
next section.

To obtain the equations of motion in the CDM variables we
recall that, for any function u

du

— ={u;. #. 9
= (w7} ©
[ N.B. {u; w} denotes the Poisson bracket of any two functions
u and w]. The easiest way to find £ in our problem is to rewrite
the Hamiltonian (4) as

2

a
=

(s*G*+58 G™?), (10)
and then to use the Poisson brackets for {¢;;¢;} and {&;; G}
given by Coffey et al. (1986) together with

{6:87} = -206/G, {&:s%} =226,/G. {&:s?}=0.

For the & we have, for example,

. 0.7,
G={{;Z} =« 6{2] {661+
8.74 0.7,
+E_5-G_]{£”G}+€—8(_32%{&;82} a1

and similarly for the remaining two variables. In this manner
we obtain the equations of motion

€ = jed LM &,
& = 3ed? L0 6, (12)
&= —5:a*G7'L7¢ &
the coefficients N/ and Af, are the functions

, 3 €3 3
A[]=—G+5—G73'+]O—G-. ]\.[2‘2 —5&—.4 (13)

The crucial element in determining the portrait of the phase
flow is the location of equilibria for system (12) and their sta-
bility.

3.1. Equilibria

The equilibria are the points on the sphere, where all the right-
hand sides of the system (12) vanish at the same time. The
first two points are quite easy to identify — they come from
setting §; = & = 0 and the critical points P; and P, are the
poles of the sphere. The north pole P = (0.0, (L - H?)/2)
represents the circular orbits with the inclinations depending on

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1996A%26A...315..618B&amp;db_key=AST

FTI99BARA. - Z315. Z618B

620

H, L (hence on the radius of the sphere), and the south pole
P; = (0.0.(H* — L?)/2) represents the orbits in the Galactic
plane with the eccentricities depending on R,. These two points
are equilibria for all values of the parameters L, H allowed.
Two more critical points can be found by setting £, = 0 and
solving M, (&2,€3,G) = 0, where & = LGes and & = G? —
3 (L? + H?). These two points are Py = (0, &.6&)and Py =
(Oe _52: ES)! where

((\/5/2)HL(H2 +L2) — (9/4) H? L2) G
(-L* -~ H?>+V5HL)/)2.

& (14)
&
Because the expression under the square root should be strictly
positive, P; and P exist only when H2/L? < 4/5. These two
equilibria and the condition for their existence were found by
Heisler & Tremaine (1986). Expressing &, &3 in terms of Kep-
lerian elements one can identify P; and P as the orbits with

F=4(1-8),

1

(15)

(16)

and with the arguments of perihelia equal 7 /2 and 37 /2 respec-
tively.

3.2. Stability of equilibria

To determine the stability of the four points of equilibrium P,
we form the variational equations for the system (12), replacing
its right-hand sides by their linear approximations in the vicinity
of a given critical point. Substituting £ = £€® + §¢, where £*
stands for the value of £ at the point Py, we obtain the variational
equations

56 = Lea? L2 [Mfk>5gz+g;’”51\1,],
66 = Yea’ L% (MM o6 + €0 611y) (17)

—5¢q?

6 = o [958 + 6966 — (€969 /6) 5G]

For the critical points P;, P, at the poles of the sphere the
variational equations become

66 = > M{"? 86,

. 502 1.2)
66 = =75 MV 86y, (18)
653 = 0.

The characteristic equation for this linear differential system is

AN —t2a LMY A = 0. (19)
At the north pole we have
GV=L, MV=L(4-5H*/L*) . M =L  (20)

Accordingly, when H?/L? > 4/5, the product A{" A" is
negative and the roots of (19) arc pure imaginary numbers. This

S. Breiter et al.: The action of the Galactic disk on the Oort cloud comets

means that the circular orbits are stable if and only if SH? >
4L When H?/L* < 4/5 the roots of (19) are real and the
circular orbits are unstable.

As for the south pole, we have
GP=H. MP=4H-51*/H, MP=H, @1
and the product of M,(Z)Mf) is always negative. Hence, the
orbits in the Galactic plane are stable for all 0 < H2 < L2.

Because of the expressions (14) and (15), the stability anal-
ysis for P; and P, would be too complicated if it was based on
the variational equations. But we already know the stability of
P, and P,; then we can use the index theorem to derive the sta-
bility of the remaining two equilibria. According to the theorem
(see, e.g., (Firby & Gardiner 1991)) the sum of the indices of
the fixed points is equal to the Euler characteristic of the phase
space. In the present case we have stable elliptic points with the
stability index +1, and unstable hyperbolic points with the index
—1. The phase space being the sphere .2, the Euler character-
istic is +2. The critical points Py, Py exist when H?/L? < 4/5.
For these values of the parameters P, is unstable hence of index
—1; P5, however, is stable, hence of index +1. Thus the sum of
the indices of P53 and Py must be equal to 2; hence, for each of
them the index is 1, which means that both are stable.

3.3. The motion on non polar orbits

The global dynamics of the averaged problem is illustrated in
Fig. 1 where the £-spheres are shown as seen from the poles.
The principal parameter is the ratio o = H2/L?.

When a is < 4/5 we distinguish there three separate re-
gions of motion:

1. The curves encircling the south pole represent the orbits for
which the argument of perihelion g circulates. They reach
the maximum eccentricity (i.e. minimum inclination) at §; =
0,ie.,at g = 7/2 and g = 37/2. The minimum of e (the
most northern point) occurs at & = 0, i.e,, at g = 0 and
g = 7. Following the convention of Pretka & Dybczynski
(1994) we call this family the solutions of “class A”.

2. The curves around the stable point P are the orbits with
librating argument of perihelion. Their eccentricity reaches
maximum and minimum values at ¢ = 7/2. We call this
family the solutions of “class B;”.

3. In the neighbourhood of P, we find a copy of the B; family
with g librating around 37 /2 and with the extrema of e on
the meridian g = 37 /2. We call this family the orbits in
“class By”.

The families A, By, and B, are separated by the two homoclinic
orbits: (i) C; encircling the B, orbits, and (ii) C; encircling the
B,. The eccentricity of a comet on the orbit whose G and g fall
at C or C, will approach zero asymptotically with g converging
to some specific value depending on a.

When the parameter a is > 4/5, the families B, and B,
together with the separatrices C) and C; disappear. All the orbits
— save for the poles, where ¢ is meaningless — belong to class
A with circulating g. As a tends to 1, the curves resemble more
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Fig. 1. Solutions in the general case traced on £-spheres for various val-
ues of a = H2/L*. From top to bottom, a = 0.09, 0.64, 0.79, 0.865.
Northern hemispheres are shown at the left, and southern ones at the
right. The regions of the class B orbits are shaded.

and more the parallels of latitude along which eccentricity and
inclination are constant.

4. Polar orbits

For polar orbits with H = 0 the CDM variables are insuffi-
cient. Let us set s = 1 in the Hamiltonian (4). Omitting the
constant term a? /4 we obtain the perturbation function for the
polar problem

T, =

L a®€? (4 sin® g — cos? g). (22)

621

Once more we treat the problem on a sphere .2, but this time
we use the variables introduced by Deprit (1983)

G=vVLI?—-G%¥cosg. (=VL?-G?sing, 3=G

The radius of the sphere defined by these variables is

Re=(G+@+) =L .

As in the case of the £-sphere, the meridians are the lines
g =const. The parallels of latitude are the lines of a constant
eccentricity; yet, in contrast to what we found on £-spheres, the
equator (3 = 0 is the place for rectilinear orbits (G = 0), and not
only the north pole but also the southern one represents circular
orbits. The northern hemisphere consists of the prograde orbits
with the angular momentum G > 0, and the southern hemi-
sphere points correspond with the retrograde orbits of G < 0.
Note, that this approach is different from the usual habit of dis-
tinguishing the prograde and retrograde orbits by the sign of H,
which is no longer possible when H = 0.

The Hamiltonian ?Z is readily expressed in terms of  as

Fh=3 L7 (4G -¢)) . (23)

The Poisson brackets

{G:Gr=G, {sGY=6G, {G:GY=¢C.

are simple, and so is the derivation of the equations of motion

b = {GreFa)=2ed® L7 GG,

& = (e} =1ed L2 (G, (24)
G o= {eFh) = ~3ed’ L7 (G

The system admits 51x equilibria; these are the points

P1 =(L.0.0), P=(0,L,0), Py=(0,0,L).
P4—(_L7070)t P5=(07—L70)7 P6=(070a _L)

Analysis of their stability is trivial, so we present only the results.
The points P, and Py are the rectilinear orbits with g = 0 and
g = 7 respectively, both lying in the Galactic plane. These two
equilibria are stable. The points P, and Ps are the rectilinear
orbits perpendicular to the Galactic plane; they have g = 7/2
andg = 37r/2 They are also stable equilibria. The two unstable
points P; and P6 are the prograde and retrograde circular orbits.

Fig. 2 presents the motion on the {-sphere. We see four fami-
lies of periodic solutions separated by the four homoclinic orbits
connecting the poles. The separatrices are the meridians defined
by cos g = ++/4/5. It is worth noting in Fig. 2 that all periodic
solutions pass through both hemispheres and this means that
any elliptic orbit perpendicular to the Galactic plane becomes
rectilinear for a moment. Then a comet changes the sense of its
orbital motion until its next passage through rectilinear stage.
The eccentricity reaches a minimum value when g is 0, 7/2. 7
or3r/2.
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Fig. 2. Solution curves for polar orbits traced on the ¢-sphere.

5. Evolution of the Laplace vector

In cometary studes, since Byl (1983), special attention is paid to
the Galactic latitude b of the perihelion. In the solution of Matese
& Whitman (1989), b remains always in a zone bounded by the
critical value b., where

cosb. = 1/4/5.

The critical value b, is a stationary solution for b. Because of
sin b = ssin g, this means that s grows at the same rate as sin g
dimnishes or vice versa.

Instead of focusing on b alone, we propose a geometri-
cal construction which shows the evolution of a heliocentric
Laplace vector e in Galactic reference frame and explains the
facts quoted above. The Laplace vector e is directed towards
the perihelion, and its length is the eccentricity of the orbit. The
Cartesian components of e are thus given by

(25)

e; = e(cosgcosh — csingsinh),

e; = e(cosgsinh +csingcosh). 26)

ez = essing.

Accordingly, the latitude b of the perihelion is such that sin b =
es/e.

Taking our cue from Solov’ev (1981) we express Eq. (4) in
terms of the components of e, thereby obtaining that

el +ed —del=p. 27
The parameter 3 is
B=1~-H?/L* - 4.7, /d’. (28)

Eq. (27) defines a family of quartics on which the extremity of e
lies during the motion. All these quartics are hyperboloids with
rotational symmetry around the axis Oz; they all have the same
asymptotic cone.

For perturbed elliptic orbits, —4 < 3 < 1. Depending on
the value of 3, three cases occur.

S. Breiter et al.: The action of the Galactic disk on the Oort cloud comets

Fig. 3. The surface (31) in the nodal frame for the value of a = 0.2.

1. For 8 > 0 - a hyperboloid with one sheet. The intersection
of the hyperboloid with the Ozy plane is a circle of radius
/3. This radius sets the lower bound on the minimum value
of the eccentricity allowed by the initial conditions and it is
associated with b = 0.

2. For § < 0 - a hyperboloid with two sheets. The sheets
intersect the Oz axis at the points e3 = £+/—[3/4, setting
lower bounds on the minimum value of the eccentricity. The
values of b associated with this minimum are /2.

3. For # = 0 - an asymptotic cone, the only suface which
intersects the origin e = 0. The cone separates two families
of hyperboloids thus setting a natural barrier for b in motions
with 3 # 0. The angle between the Ozy plane and the surface
of the asymptotic cone is precisely the value given by Eq.
(25), hence a nice geometrical interpretation of this critical
value.

The trajectories of the Laplace vector’s extremity lie at the
intersection of a quartic 8 = const. and of another surface,
namely the one defined by the integral H =const. In the av-
eraged system we have

— 7272 _ 2\ o
a=H*/L*=(1 —e“)c= const. 29)
In the heliocentric Galactic reference frame Oz'y’z’ whose Oz’
axis points permanently to the ascending node of the orbit (the
so called nodal frame), the Laplace vector has the components

ey =ecosg, ey;=ecsing, ey=essing, (30)
and the integral (29) can be expressed as
e3(1 — e /(3 +ed)=a (31)

The surface defined by this integral (let us call it “the a surface”)
is symmetric with respect to the coordinate planes Oz'y’, Oy’z’
and Oz’ (see Fig. 3).
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€,  Fig. 4a—c. The intersections of a = 0.2
B surface with three 3-surfaces: a 8 = 0.25,

28 B b 3 =0, ¢ 3 = —0.25. The intersection
T 1S curves are plotted to the right and labeled
according to the classification proposed in

€ Sect. 5.

The geometrical construction based on the intersections of An consisting of the orbits for which the perihelia have
the surfaces (27) and (31) leads to conclusions similar to those ez > 0 when 0 < g < 7 and the class As of orbits with
of Sect. 2. Observe, however, that to each point on the £-sphere e3 < 0for0 < g < 7 (see Fig. 4a).
correspond two orbits of the model; they are in fact the mirror (b) When a tends to 1 the a-surface flattens and shrinks;
image of one another with respect to the coordinate plane Oz'y’. at the limit it collapses into a point e = 0. This effect
Hence to each point of .% correspond two Laplace vectors. coincides with the collapse of a £-sphere at H = L.

2. When 3 < 0.

1. When 3 > 0,
(a) Forany 0 < a < 1 the Laplace vector circulates around
the axis Oz’. The latitude of perihelion oscillates around

As it follows from solving the system of the Egs. (27) and
(31) the a-surface and 3-surface intersect if and only if

b = 0. The eccentricity takes the minimum value epi, = K=(@-5a+0)’+20a520. (32)
/B when e crosses the Galactic plane, i.e., whenb=0 Hence two cases arise:

and either g = 0 or g = m. We recognize here the orbits (a) When xis > 0, the hyperboloid and the a-surface inter-
of class A. We can subdivide this family into the class sect along two distinct closed curves and their symmet-
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ric images with respect to the Galactic plane. The two
curves for e, > 0 are the class B; orbits, while those
with e; < 0 belong to the class B;. The eccentricity e
reaches its maximum value at the minimum of | b |; and
its minimum at the maximum of | b |. Both extrema oc-
curatg = n/2 for By and g = 37 /2 for B;. In Fig. 4c the
curves are further divided into into By, Bis and By,
Bss, where N indicates e3 > 0 and S stands for e3 < 0.
(b) When & = 0, the surfaces intersect in four points at
which
e=+v/@~-5a-p0)/8. (33)
and either g = m/2 or g = 3n/2. The latitude of the
perihelion at these points is
4-5a-906
54-5a-0)
Looking back at the £-sphere we recognize here the crit-
ical points P; and F;; like in the previous case and for
the same reason we should distinguish P3N, Pss, PN,
and Pjs.
3. The boundary case 3 =0
(a) When 0 < a < 4/5 the surfaces intersect forming the
four plane curves with b having the critical value b, men-
tioned in (25). These are the homoclinic trajectories C)n;,
Cis, Can, and Cys which tend asymptotically to e = 0.
They are plotted in Fig. 4b.
(b) When a > 4/5 the intersection reduces to the point
e = 0 which is precisely the north pole P, of the &-
sphere.

sinb== (34)

The geometric model for the evolution of the Laplace vector
is interesting in that it leads to some information useful for
example in Monte Carlo simulations.

It results from the previous discussion, that e reaches its
maximum value at e; = O for any orbit. Under that condition
we obtain from (27) and (31) that

exmn) = \/(4 = 5a+B+/R)/10. (35)
e = \/(4 = 5a =98 +/K)/40. (36)
Hence the maximum possible eccentricity

emx = /(4 =50 = f+ VRS, (37

S. Breiter et al.: The action of the Galactic disk on the Oort cloud comets

6. Conclusions

We have formed a geometric picture of the effect of Galactic
disk tides on comets. The picture is simple and, we might say,
intuitive. It sets in focus the basic features of the averaged prob-
lem: (i) that for non polar orbits there is a critical value of H/L
where a pitchfork bifurcation occurs in the phase flow, and (ii)
that for polar orbits a reversal in the sense of motion is possible.
The analogy with the Stark effect (Deprit 1983) and the Zeeman
effect (Deprit & Ferrer 1990) is striking.

Work is in progress to exploit the statistical consequences of
this geometric picture for the Oort cloud cometary population.
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